Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24.859
Filter
1.
Front Immunol ; 15: 1385190, 2024.
Article in English | MEDLINE | ID: mdl-38711523

ABSTRACT

The discovery of Suppressor of Cytokine Signaling 1 (SOCS1) in 1997 marked a significant milestone in understanding the regulation of Janus kinase/Signal transducer and activator of transcription (JAK/STAT) signaling pathways. Subsequent research deciphered its cellular functions, and recent insights into SOCS1 deficiencies in humans underscored its critical role in immune regulation. In humans, SOCS-haploinsufficiency (SOCS1-HI) presents a diverse clinical spectrum, encompassing autoimmune diseases, infection susceptibility, and cancer. Variability in disease manifestation, even within families sharing the same genetic variant, raises questions about clinical penetrance and the need for individualized treatments. Current therapeutic strategies include JAK inhibition, with promising results in controlling inflammation in SOCS1-HI patients. Hematopoietic stem cell transplantation and gene therapy emerge as promising avenues for curative treatments. The evolving landscape of SOCS1 research, emphasizes the need for a nuanced understanding of genetic variants and their functional consequences.


Subject(s)
Signal Transduction , Suppressor of Cytokine Signaling 1 Protein , Humans , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Animals , Janus Kinases/metabolism , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/therapy , Haploinsufficiency , STAT Transcription Factors/metabolism , STAT Transcription Factors/genetics , Genetic Therapy
2.
Kidney Int ; 105(1): 54-64, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38707675

ABSTRACT

The neonatal Fc receptor (FcRn) was initially discovered as the receptor that allowed passive immunity in newborns by transporting maternal IgG through the placenta and enterocytes. Since its initial discovery, FcRn has been found to exist throughout all stages of life and in many different cell types. Beyond passive immunity, FcRn is necessary for intrinsic albumin and IgG recycling and is important for antigen processing and presentation. Given its multiple important roles, FcRn has been utilized in many disease treatments including a new class of agents that were developed to inhibit FcRn for treatment of a variety of autoimmune diseases. Certain cell populations within the kidney also express high levels of this receptor. Specifically, podocytes, proximal tubule epithelial cells, and vascular endothelial cells have been found to utilize FcRn. In this review, we summarize what is known about FcRn and its function within the kidney. We also discuss how FcRn has been used for therapeutic benefit, including how newer FcRn inhibiting agents are being used to treat autoimmune diseases. Lastly, we will discuss what renal diseases may respond to FcRn inhibitors and how further work studying FcRn within the kidney may lead to therapies for kidney diseases.


Subject(s)
Histocompatibility Antigens Class I , Kidney Diseases , Receptors, Fc , Humans , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/genetics , Receptors, Fc/metabolism , Receptors, Fc/immunology , Receptors, Fc/genetics , Kidney Diseases/metabolism , Kidney Diseases/drug therapy , Kidney Diseases/therapy , Kidney Diseases/immunology , Animals , Kidney/metabolism , Kidney/immunology , Kidney/pathology , Podocytes/metabolism , Podocytes/immunology , Immunoglobulin G/metabolism , Immunoglobulin G/immunology , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism
3.
Nat Immunol ; 25(5): 743-754, 2024 May.
Article in English | MEDLINE | ID: mdl-38698239

ABSTRACT

Human autoimmunity against elements conferring protective immunity can be symbolized by the 'ouroboros', a snake eating its own tail. Underlying infection is autoimmunity against three immunological targets: neutrophils, complement and cytokines. Autoantibodies against neutrophils can cause peripheral neutropenia underlying mild pyogenic bacterial infections. The pathogenic contribution of autoantibodies against molecules of the complement system is often unclear, but autoantibodies specific for C3 convertase can enhance its activity, lowering complement levels and underlying severe bacterial infections. Autoantibodies neutralizing granulocyte-macrophage colony-stimulating factor impair alveolar macrophages, thereby underlying pulmonary proteinosis and airborne infections, type I interferon viral diseases, type II interferon intra-macrophagic infections, interleukin-6 pyogenic bacterial diseases and interleukin-17A/F mucocutaneous candidiasis. Each of these five cytokine autoantibodies underlies a specific range of infectious diseases, phenocopying infections that occur in patients with the corresponding inborn errors. In this Review, we analyze this ouroboros of immunity against immunity and posit that it should be considered as a factor in patients with unexplained infection.


Subject(s)
Autoantibodies , Autoimmunity , Humans , Autoantibodies/immunology , Animals , Cytokines/metabolism , Cytokines/immunology , Neutrophils/immunology , Complement System Proteins/immunology , Autoimmune Diseases/immunology
4.
Front Immunol ; 15: 1343987, 2024.
Article in English | MEDLINE | ID: mdl-38690268

ABSTRACT

Autophagy is a cellular process that functions to maintain intracellular homeostasis via the degradation and recycling of defective organelles or damaged proteins. This dynamic mechanism participates in various biological processes, such as the regulation of cellular differentiation, proliferation, survival, and the modulation of inflammation and immune responses. Recent evidence has demonstrated the involvement of polymorphisms in autophagy-related genes in various skin autoimmune diseases. In addition, autophagy, along with autophagy-related proteins, also contributes to homeostasis maintenance and immune regulation in the skin, which is associated with skin autoimmune disorders. This review aims to provide an overview of the multifaceted role of autophagy in skin autoimmune diseases and shed light on the potential of autophagy-targeting therapeutic strategies in dermatology.


Subject(s)
Autoimmune Diseases , Autophagy , Skin Diseases , Humans , Autophagy/immunology , Autoimmune Diseases/immunology , Skin Diseases/immunology , Animals , Skin/immunology , Skin/pathology , Skin/metabolism , Homeostasis/immunology
5.
Int J Nanomedicine ; 19: 3943-3956, 2024.
Article in English | MEDLINE | ID: mdl-38708179

ABSTRACT

Autoimmune diseases refer to a group of conditions where the immune system produces an immune response against self-antigens, resulting in tissue damage. These diseases have profound impacts on the health of patients. In recent years, with the rapid development in the field of biomedicine, engineered exosomes have emerged as a noteworthy class of biogenic nanoparticles. By precisely manipulating the cargo and surface markers of exosomes, engineered exosomes have gained enhanced anti-inflammatory, immunomodulatory, and tissue reparative abilities, providing new prospects for the treatment of autoimmune diseases. Engineered exosomes not only facilitate the efficient delivery of bioactive molecules including nucleic acids, proteins, and cytokines, but also possess the capability to modulate immune cell functions, suppress inflammation, and restore immune homeostasis. This review mainly focuses on the applications of engineered exosomes in several typical autoimmune diseases. Additionally, this article comprehensively summarizes the current approaches for modification and engineering of exosomes and outlines their prospects in clinical applications. In conclusion, engineered exosomes, as an innovative therapeutic approach, hold promise for the management of autoimmune diseases. However, while significant progress has been made, further rigorous research is still needed to address the challenges that engineered exosomes may encounter in the therapeutic intervention process, in order to facilitate their successful translation into clinical practice and ultimately benefit a broader population of patients.


Subject(s)
Autoimmune Diseases , Exosomes , Exosomes/immunology , Humans , Autoimmune Diseases/therapy , Autoimmune Diseases/immunology , Animals , Nanoparticles/chemistry
6.
Cell Commun Signal ; 22(1): 262, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715122

ABSTRACT

Gene editing of living cells has become a crucial tool in medical research, enabling scientists to address fundamental biological questions and develop novel strategies for disease treatment. This technology has particularly revolutionized adoptive transfer cell therapy products, leading to significant advancements in tumor treatment and offering promising outcomes in managing transplant rejection, autoimmune disorders, and inflammatory diseases. While recent clinical trials have demonstrated the safety of tolerogenic dendritic cell (TolDC) immunotherapy, concerns remain regarding its effectiveness. This review aims to discuss the application of gene editing techniques to enhance the tolerance function of dendritic cells (DCs), with a particular focus on preclinical strategies that are currently being investigated to optimize the tolerogenic phenotype and function of DCs. We explore potential approaches for in vitro generation of TolDCs and provide an overview of emerging strategies for modifying DCs. Additionally, we highlight the primary challenges hindering the clinical adoption of TolDC therapeutics and propose future research directions in this field.


Subject(s)
Autoimmune Diseases , Dendritic Cells , Humans , Dendritic Cells/immunology , Autoimmune Diseases/therapy , Autoimmune Diseases/immunology , Autoimmune Diseases/genetics , Animals , Gene Editing/methods , Immunotherapy/methods
7.
Front Immunol ; 15: 1349138, 2024.
Article in English | MEDLINE | ID: mdl-38720903

ABSTRACT

Autoimmune diseases can damage specific or multiple organs and tissues, influence the quality of life, and even cause disability and death. A 'disease in a dish' can be developed based on patients-derived induced pluripotent stem cells (iPSCs) and iPSCs-derived disease-relevant cell types to provide a platform for pathogenesis research, phenotypical assays, cell therapy, and drug discovery. With rapid progress in molecular biology research methods including genome-sequencing technology, epigenetic analysis, '-omics' analysis and organoid technology, large amount of data represents an opportunity to help in gaining an in-depth understanding of pathological mechanisms and developing novel therapeutic strategies for these diseases. This paper aimed to review the iPSCs-based research on phenotype confirmation, mechanism exploration, drug discovery, and cell therapy for autoimmune diseases, especially multiple sclerosis, inflammatory bowel disease, and type 1 diabetes using iPSCs and iPSCs-derived cells.


Subject(s)
Autoimmune Diseases , Induced Pluripotent Stem Cells , Humans , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Animals , Drug Discovery , Cell- and Tissue-Based Therapy/methods
10.
Front Immunol ; 15: 1346671, 2024.
Article in English | MEDLINE | ID: mdl-38698867

ABSTRACT

IgG4 subclass antibodies represent the rarest subclass of IgG antibodies, comprising only 3-5% of antibodies circulating in the bloodstream. These antibodies possess unique structural features, notably their ability to undergo a process known as fragment-antigen binding (Fab)-arm exchange, wherein they exchange half-molecules with other IgG4 antibodies. Functionally, IgG4 antibodies primarily block and exert immunomodulatory effects, particularly in the context of IgE isotype-mediated hypersensitivity reactions. In the context of disease, IgG4 antibodies are prominently observed in various autoimmune diseases combined under the term IgG4 autoimmune diseases (IgG4-AID). These diseases include myasthenia gravis (MG) with autoantibodies against muscle-specific tyrosine kinase (MuSK), nodo-paranodopathies with autoantibodies against paranodal and nodal proteins, pemphigus vulgaris and foliaceus with antibodies against desmoglein and encephalitis with antibodies against LGI1/CASPR2. Additionally, IgG4 antibodies are a prominent feature in the rare entity of IgG4 related disease (IgG4-RD). Intriguingly, both IgG4-AID and IgG4-RD demonstrate a remarkable responsiveness to anti-CD20-mediated B cell depletion therapy (BCDT), suggesting shared underlying immunopathologies. This review aims to provide a comprehensive exploration of B cells, antibody subclasses, and their general properties before examining the distinctive characteristics of IgG4 subclass antibodies in the context of health, IgG4-AID and IgG4-RD. Furthermore, we will examine potential therapeutic strategies for these conditions, with a special focus on leveraging insights gained from anti-CD20-mediated BCDT. Through this analysis, we aim to enhance our understanding of the pathogenesis of IgG4-mediated diseases and identify promising possibilities for targeted therapeutic intervention.


Subject(s)
Autoantibodies , Autoimmune Diseases , Autoimmunity , Immunoglobulin G , Humans , Immunoglobulin G/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Animals , Autoantibodies/immunology , B-Lymphocytes/immunology , Immunoglobulin G4-Related Disease/immunology , Immunoglobulin G4-Related Disease/therapy
11.
Mol Biol Rep ; 51(1): 629, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717637

ABSTRACT

It has been rediscovered in the last fifteen years that B-cells play an active role in autoimmune etiology rather than just being spectators. The clinical success of B-cell depletion therapies (BCDTs) has contributed to this. BCDTs, including those that target CD20, CD19, and BAFF, were first developed to eradicate malignant B-cells. These days, they treat autoimmune conditions like multiple sclerosis and systemic lupus erythematosus. Particular surprises have resulted from the use of BCDTs in autoimmune diseases. For example, even in cases where BCDT is used to treat the condition, its effects on antibody-secreting plasma cells and antibody levels are restricted, even though these cells are regarded to play a detrimental pathogenic role in autoimmune diseases. In this Review, we provide an update on our knowledge of the biology of B-cells, examine the outcomes of clinical studies employing BCDT for autoimmune reasons, talk about potential explanations for the drug's mode of action, and make predictions about future approaches to targeting B-cells other than depletion.


Subject(s)
Autoimmune Diseases , B-Lymphocytes , Lymphocyte Depletion , Humans , B-Lymphocytes/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Lymphocyte Depletion/methods , Antigens, CD20/immunology , Antigens, CD19/immunology , Animals , B-Cell Activating Factor/immunology , Multiple Sclerosis/immunology , Multiple Sclerosis/therapy , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/therapy
14.
Neurology ; 102(10): e209297, 2024 May.
Article in English | MEDLINE | ID: mdl-38696733

ABSTRACT

BACKGROUND AND OBJECTIVES: Among infectious etiologies of encephalitis, herpes simplex virus type 1 (HSV-1) is most common, accounting for ∼15%-40% of adult encephalitis diagnoses. We aim to investigate the association between immune status and HSV encephalitis (HSVE). Using a US Medicaid database of 75.6 million persons, we evaluated the association between HSVE and autoimmune conditions, exposure to immunosuppressive and immunomodulatory medications, and other medical comorbidities. METHODS: We used the US Medicaid Analytic eXtract data between 2007 and 2010 from the 29 most populated American states. We first examined the crude incidence of HSVE in the population. We then age and sex-matched adult cases of HSVE with a sufficient enrollment period (12 months before HSVE diagnosis) to a larger control population without HSVE. In a case-control analysis, we examined the association between HSVE and exposure to both autoimmune disease and immunosuppressive/immunomodulatory medications. Analyses were conducted with conditional logistic regression progressively adjusting for sociodemographic factors, Charlson Comorbidity Index, and non-autoimmune comorbidities. RESULTS: Incidence of HSVE was ∼3.01 per 105 person-years among adults. A total of 951 HSVE cases and 95,100 age and sex-matched controls were compared. The HSVE population had higher rates of medical comorbidities than the control population. The association of HSVE and autoimmune conditions was strong (adjusted odds ratio (OR) 2.6; 95% CI 2.2-3.2). The association of HSVE and immunomodulating medications had an OR of 2.2 (CI 1.9-2.6), also after covariate adjustment. When both exposures were included in regression models, the associations remained robust: OR 2.3 (CI 1.9-2.7) for autoimmune disease and 2.0 (CI 1.7-2.3) for immunosuppressive and immunomodulatory medications. DISCUSSION: In a large, national population, HSVE is strongly associated with preexisting autoimmune disease and exposure to immunosuppressive and immunomodulatory medications. The role of antecedent immune-related dysregulation may have been underestimated to date.


Subject(s)
Autoimmune Diseases , Encephalitis, Herpes Simplex , Immunomodulating Agents , Humans , Female , Male , Encephalitis, Herpes Simplex/epidemiology , Encephalitis, Herpes Simplex/immunology , Autoimmune Diseases/epidemiology , Autoimmune Diseases/immunology , Adult , Middle Aged , United States/epidemiology , Immunomodulating Agents/therapeutic use , Immunomodulating Agents/adverse effects , Case-Control Studies , Incidence , Immunosuppressive Agents/adverse effects , Immunosuppressive Agents/therapeutic use , Young Adult , Medicaid , Aged , Adolescent , Comorbidity
15.
Autoimmunity ; 57(1): 2351872, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38739691

ABSTRACT

Autophagy is a highly conserved biological process in eukaryotes, which degrades cellular misfolded proteins, damaged organelles and invasive pathogens in the lysosome-dependent manner. Autoimmune diseases caused by genetic elements, environments and aberrant immune responses severely impact patients' living quality and even threaten life. Recently, numerous studies have reported autophagy can regulate immune responses, and play an important role in autoimmune diseases. In this review, we summarised the features of autophagy and autophagy-related genes, enumerated some autophagy-related genes involved in autoimmune diseases, and further overviewed how to treat autoimmune diseases through targeting autophagy. Finally, we outlooked the prospect of relieving and curing autoimmune diseases by targeting autophagy pathway.


Subject(s)
Autoimmune Diseases , Autophagy , Humans , Autophagy/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Autoimmune Diseases/therapy , Animals , Signal Transduction/immunology , Molecular Targeted Therapy
17.
Brain Nerve ; 76(5): 443-448, 2024 May.
Article in Japanese | MEDLINE | ID: mdl-38741482

ABSTRACT

Measurement of autoantibodies is essential for the management of several peripheral nerve and muscle diseases. The clinical significance of autoantibody testing differs for each antibody. In addition, clinicians must understand several issues including the accuracy of the test, isotype and subclass distribution, and its relationship to disease activity. Moreover, many autoantibody tests are not covered by health insurance. With limited medical resources, clinicians are required to be up-to-date with the latest information to utilize test results in daily practice without misunderstanding.


Subject(s)
Autoantibodies , Humans , Autoantibodies/immunology , Autoimmune Diseases/diagnosis , Autoimmune Diseases/immunology , Peripheral Nervous System Diseases/diagnosis , Peripheral Nervous System Diseases/immunology , Inflammation/immunology , Inflammation/diagnosis , Muscular Diseases/immunology , Muscular Diseases/diagnosis
18.
Brain Nerve ; 76(5): 534-539, 2024 May.
Article in Japanese | MEDLINE | ID: mdl-38741493

ABSTRACT

Autoimmune nodopathy (AN), a newly established category of autoimmune disease, refers to an immune-mediated neuropathy associated with development of autoantibodies against membrane proteins, including neurofascin 186, neurofascin 155, contactin-1, and contactin-associated protein 1 located in the nodes of Ranvier or paranodes. Subclass analysis of these autoantibodies reveals predominant elevation of immunoglobulin (G4. Patients with AN show clinical and laboratory characteristics such as distal-predominant sensorimotor disturbance, sensory ataxia, poor response to intravenous immunoglobulin, and highly elevated cerebrospinal fluid protein levels. B cell-depletion therapy using an anti-CD20 monoclonal antibody is effective for patients with AN. Autoantibody measurement is beneficial not only for diagnosis but also for deciding treatment strategies for AN.


Subject(s)
Autoantibodies , Humans , Autoantibodies/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/diagnosis , Autoimmune Diseases/therapy , Autoimmune Diseases of the Nervous System/immunology , Autoimmune Diseases of the Nervous System/diagnosis , Autoimmune Diseases of the Nervous System/therapy
19.
Brain Nerve ; 76(5): 562-568, 2024 May.
Article in Japanese | MEDLINE | ID: mdl-38741497

ABSTRACT

Autoimmune autonomic ganglionopathy (AAG) and acute autonomic sensory neuropathy (AASN) are immune-mediated neuropathies that affect the autonomic and/or dorsal root ganglia. Autoantibodies against the nicotinic ganglionic acetylcholine receptor (gAChR) detected in the sera of patients with AAG play a key role in the pathogenesis of this condition. Notably, gAChR antibodies are not detected in the sera of patients with AASN. Currently, AAG and AASN are not considered to be on the same spectrum with regard to disease concept based on clinical symptoms and laboratory findings. However, extra-autonomic brain symptoms (including psychiatric symptoms and personality changes) and endocrine disorders occur in both diseases, which suggests shared pathophysiology between the two conditions.


Subject(s)
Autoantibodies , Autonomic Nervous System Diseases , Ganglia, Autonomic , Humans , Ganglia, Autonomic/immunology , Autoantibodies/immunology , Autonomic Nervous System Diseases/immunology , Autonomic Nervous System Diseases/etiology , Autonomic Nervous System Diseases/diagnosis , Autoimmune Diseases of the Nervous System/immunology , Autoimmune Diseases of the Nervous System/diagnosis , Receptors, Nicotinic/immunology , Acute Disease , Autoimmune Diseases/immunology
20.
Brain Nerve ; 76(5): 646-654, 2024 May.
Article in Japanese | MEDLINE | ID: mdl-38741508

ABSTRACT

Immune-mediated necrotizing myopathy (IMNM) is a form of autoimmune myositis characterized by the presence of necrotic and regenerating process as a major finding in the muscle. Anti-SRP and anti-HMGCR have been identified as IMNM-specific autoantibodies. Patients with this disease often present with severe muscle weakness and markedly elevated serum creatine kinase (CK) levels. Differentiation from muscular dystrophy is challenging in certain cases. When patients meet the condition "subacute onset", "hyperCKemia over 1000 IU/L", and "clinical diagnosis of muscular dystrophy lacking molecular diagnosis", the possibility of IMNM should be considered. Autoantibody measurement, including of anti-SRP and HMGCR antibodies, is recommended. Treatment with corticosteroid in combination with immunosuppressants, intravenous immunoglobulin, and rituximab can be performed.


Subject(s)
Autoantibodies , Necrosis , Humans , Autoantibodies/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/diagnosis , Myositis/immunology , Myositis/diagnosis , Hydroxymethylglutaryl CoA Reductases/immunology , Immunoglobulins, Intravenous/administration & dosage , Muscle, Skeletal/pathology , Muscle, Skeletal/immunology , Signal Recognition Particle/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...